Chapter Two

Discrete time signal

1-1 Representation of Discrete Time Sequences

The discrete time sequence is denoted by x (n) as shown in Figure (1). Here 'n' is the corresponding number of the sample, in the given diagram the value of n varies from -3 to + 3. On the Y-axis, the amplitude of signal is plotted. The signal is having some amplitude at each value of n. There are three representations of discrete signals:

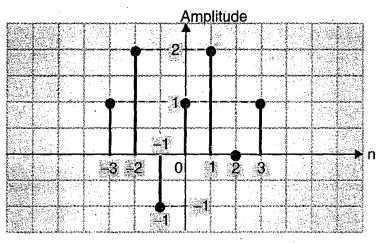


Figure 1: A discrete signal.

- Functional representation
- Tabular representation
- Sequence representation

$\mathbf{x}(\mathbf{n}) = \begin{cases} 2\\1\\0\\-1 \end{cases}$	for $n = -2, 1$ for $n = -3, 0, 3$ for $n = 2$ for $n = -1$	x (n) = $\{1, 2, -1, 1, 2, 0, 1\}$
--	--	------------------------------------

n	 -3	-2	-1	0	1	2	3
x(n)	 1	2	-1	1	2	0	1

Figure 2 : Types of representations of discrete signals. Functional, sequence and tabular.

1-2 **Basic Sequence Types**

The most commonly used sequences are:

- Unit Impulse or Delta
- Unit Step
- Unit Ramp
- Exponential
- Sinusoidal
- Complex Exponential

1-2.1 Unit Impulse or Delta Function

A Unit impulse function is denoted by δ (n), its amplitude is 1 at n=0 and it is zero at all other instances. It is represented by:

Figure 3: Unit Impulse

$\delta(n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}$

1-2.2 Unit Step

A Unit function is denoted by U (n) and its value is unity (one) for all values of $\begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases}$ n, and is zero for all negative values of n. it is written as u(n) =

Figure 4: Unit step sequence and function.

1-2.3 Unit Ramp

A Unit function is denoted by U_r (n) and its value increases linearly with the value of n and is zero for all negative n values.

 $u_{r}(n) = \begin{cases} n \text{ for } n \ge 0\\ 0 \text{ for } n < 0 \end{cases}$

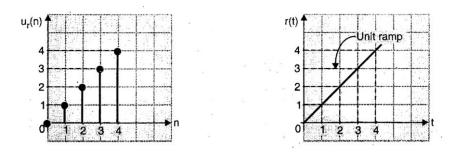


Figure 5 : Unit Ramp.

1-2.4 Exponential Signal

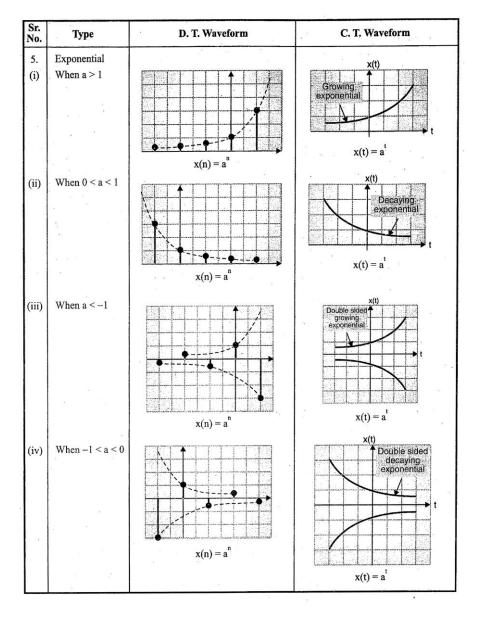


Figure 6 : Cases of Exponential signals $x(n) = a^n$

1-2.5 Sinusoidal Signal

 $x(n) = A \sin \omega n$ Here $A = Amplitude \omega = Angular$ Frequency = $2\pi f$

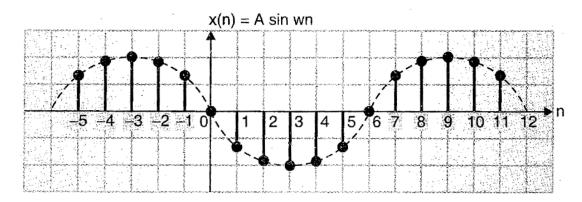


Figure 7: DT Sinusoidal waveform.

1-2.6 Complex Exponentials

The complex exponential function will become a critical part of your study of signals and systems. Its general discrete form is written as: Ae^{sn} Where, $s=\sigma+i\omega$. Here we can use Euler's formula which is:

 $e^{i\omega n}=e^{i\left(\omega+2\pi
ight)n}$ And $e^{jx}=\cos{\left(x
ight)}+j\,\sin{\left(x
ight)}$

There will be two cases for the complex exponentials according to the value of e:

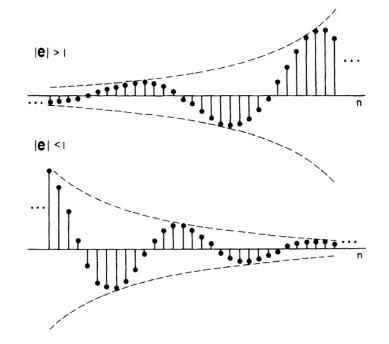


Figure 8: DT Complex exponential.

1-3 Basic Operations on Sequence

Many times it is necessary to modify the original signal. This modification is achieved by performing different operations on given discrete-time signal. Some of these operations are:

- Time Delay
- Time Advance
- Time Folding
- Time Scaling (Up and Down Sampling)
- Amplitude Scaling (Amplification and Attenuation)
- Signals Addition
- Signals Multiplication

1-3.1 Time Delay

 \therefore x (n) \rightarrow Original sequence

and $x(n-k) \rightarrow \text{Original}$ sequence delayed by k samples.

Example: Let the given signal by: $x(n) = \{1, 2, 3, 4, 5\}$ which is shown in Figure (9)

We can write the delayed sequence as:

$$\begin{array}{rcl} x \ (n-k) &=& x \ (n-2) = \{0, \ 0, \ 1, \ 2, \ 3, \ 4, \ 5\} \\ \uparrow \end{array}$$

The Delayed version is shown in Figure (10).

1-3.2 Time Advance

We can write advanced sequence as:

$$x(n+k) = x(n+2) = \{1, 2, 3, 4, 5\}$$

Which is shown in Figure (11).

1-3.3 Time Folding: It is the Reflection as:

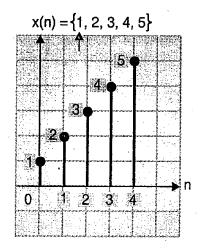
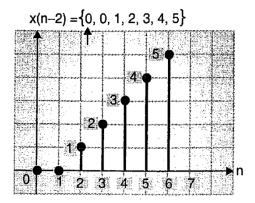
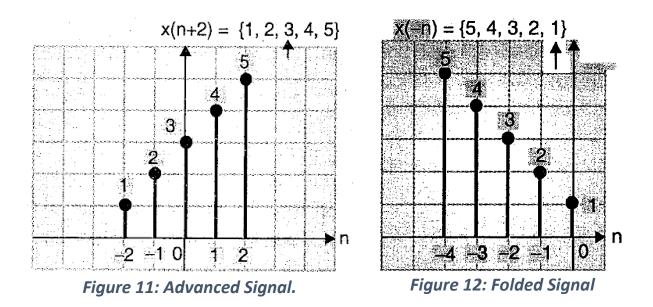



Figure 9: A Discrete Signal



$$(-n) = \{5, 4, 3, 2, 1\}$$

х

Page 5 of 21

The folded signal can be delayed and advanced as shown in Figure (13) and Figure (14) respectively.

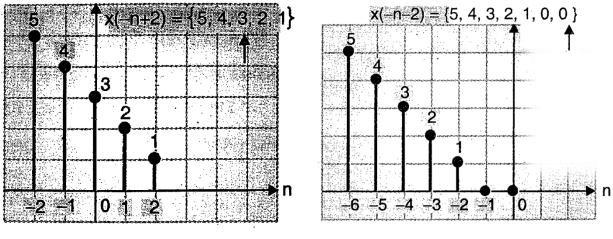
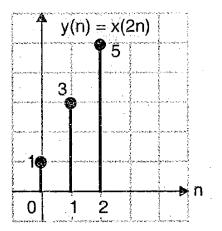



Figure 13: Delayed Folded Signal.

1-3.4 Time Scaling

There are two types of time scaling, down and up scaling. Scaling call sometimes sampling. **Down sampling** as called Compression, scaling down by 2 is written as: that mean y(n) = x(2n) every two samples one goes out. For the signal of Figure (9) the output will become: $y(n) = x(2n) = \{1, 3, 5, 0,\}$ Which is shown in Figure (15).

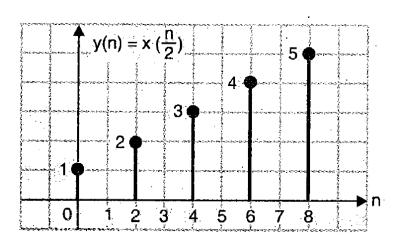
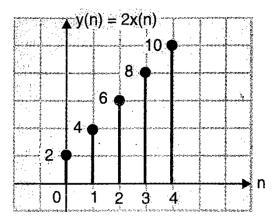


Figure 15: Down sampling

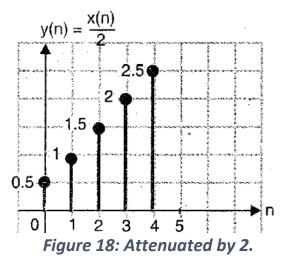
Up sampling as called Expansion, scaling up by 2 is written as:

There will be zeros between each sample as shown in figure (16)


1-3.5 Amplitude Scaling

An **Amplification** operation is, a sample multiplication, denoted for example by y(n) = 2* x (n), for the same x (n) of Figure (9) the output will be as Figure (17).

While an **Attenuation** operation is dividing by a number, and is denoted by:


Let
$$y(n) = \frac{x(n)}{2}$$

For the same signal of Figure (9), the output will be as in figure (18).

y(n) = x

Figure 17: Amplified by 2.

Page **7** of **21**

1-3.6 Signals Addition

Consider the two sequences:

Let
$$y(n) = x_1(n) + x_2(n)$$

 $\therefore y(n) = \{3, 3, 0, 3, 3\}$

As shown in Figure (19), each sample is added to the corresponding one.

1-3.7 Signals Multiplication

Consider the same sequences x_1 (n) and x_2 (n), the multiplication of them yields y (n) as shown in Figure (20) and according to the equation:

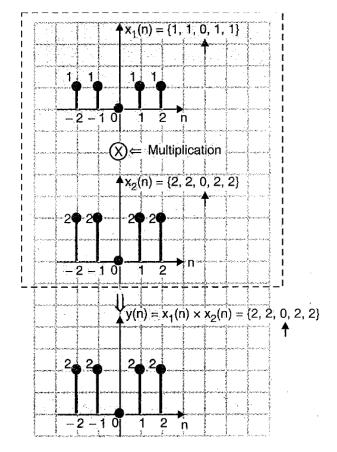
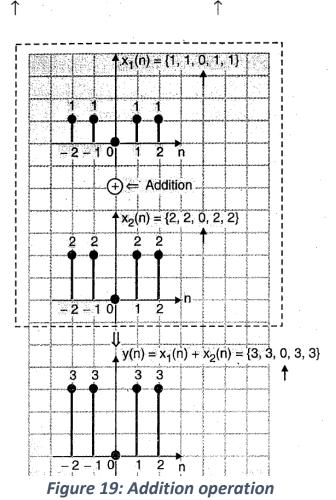
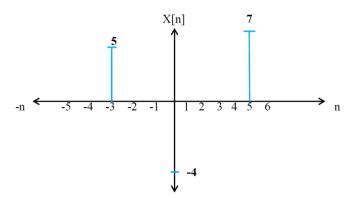



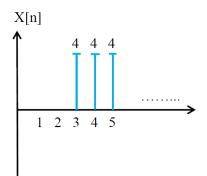
Figure 20: Multiplication operation.

 $x_1(n) = \{1, 1, 0, 1, 1\}$ and $x_2(n) = \{2, 2, 0, 2, 2\}$

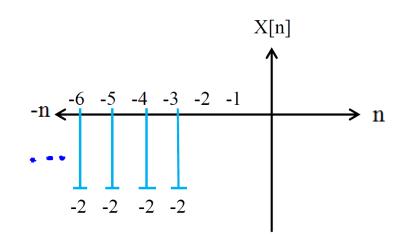

1-4 Examples and Tutorials

Note 1: Properties of Unit Impulse signal are shown in Table (1).

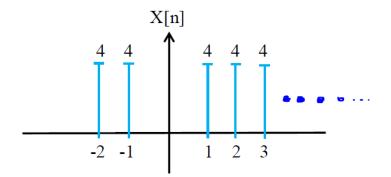
Properties of the Unit Impulse Sequence 1. $x[n]\delta[n] = x[0]\delta[n]$ 2. $x[n]\delta[n-k] = x[k]\delta[n-k]$ 3. $\delta[n] = u[n]-u[n-1]$ 4. $u[n] = \sum_{k=-\infty}^{n} \delta[k]$ 5. $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$


Example 1: Sketch the signal x[n] =5S[n+3] - 4S[n] + 7S[n-5].

Sol:

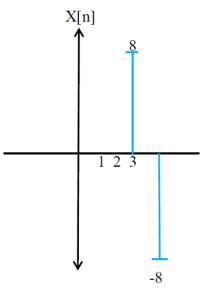

Note 2			
x(n+1)	Shift left by 1 <		
x(n-2)	Shift right by 2 >>		
x(-n+3)	Folded then Shift right by 3		
x(-n-4)	Folded then Shift left by 3		
Conclusion	+ + and < left		
conclusion	+ - and - + > right		

Example 2: Sketch the signal x[n]= 4u[n-3].



Example 3: Sketch the signal x[n]= -2u[-n-3]

Sol:

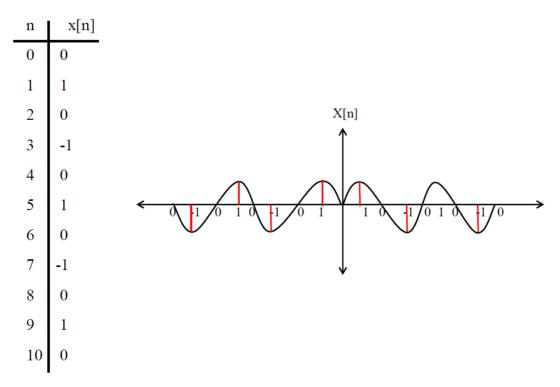


Example 4: Find the expression for signal:

Sol: 4u[n+2]

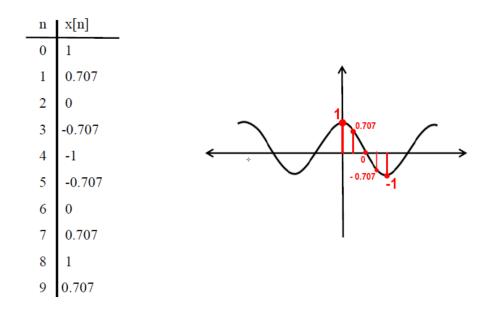
Example 5: Find the expression for signal: **Sol:** 8 δ [n-3] - 8 δ [n-4]

Page **10** of **21**

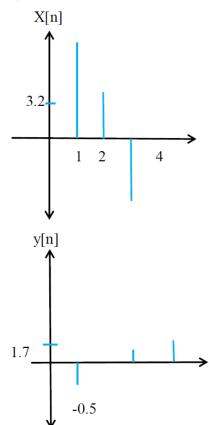

Example 6: Sketch the signal $X[n] = e^{0.2n} u[n]$:

Sol:

n	x[n]	x[n]
0	1	- ↑
1	1.22	
2	1.49	
3	1.82	
4	2.22	
5	2.7	1 2 3 4 5 6 7 8 9 10
6	3.3	
7	4.055	
8	4.95	·
9	6.04	
10	7.3	


Example 7: Sketch the signal

 $x[n] = \sin\left[\frac{\pi n}{2}\right]$


Example 8: Sketch the signal
$$X[n] = \cos\left[\frac{\pi n}{4}\right]$$

Sol:

Example 8: Consider the following two sequence of length (5):

X [n] = { 3.2 , 41 , 36 , -9.5 , 0 } Y [n] = { 1.7 , -0.5 , 0 , 0.8 , 1 } Find a) X [n] . Y[n] b) X [n] + Y [n] c) $\frac{7}{2}$ x[n]

Page **12** of **21**

Sol: a) Z[n]= x[n].y[n]={5.44,-20.5,0,-7.6,0}

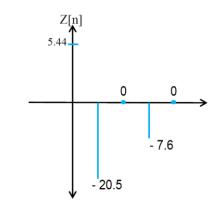
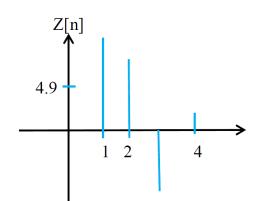
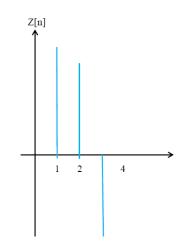
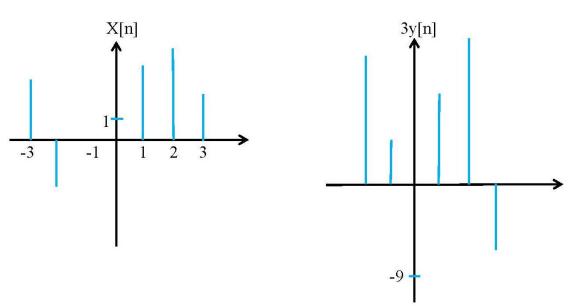




Figure a

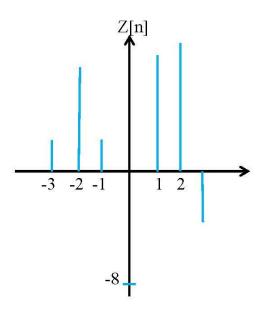
b) Z[n]= x[n]+y[n] ={4.9,40.5,36,-8.7,1}

c) Z[n]= {11.2 ,143.5 ,126 ,-33.2 ,0}

Example 9:

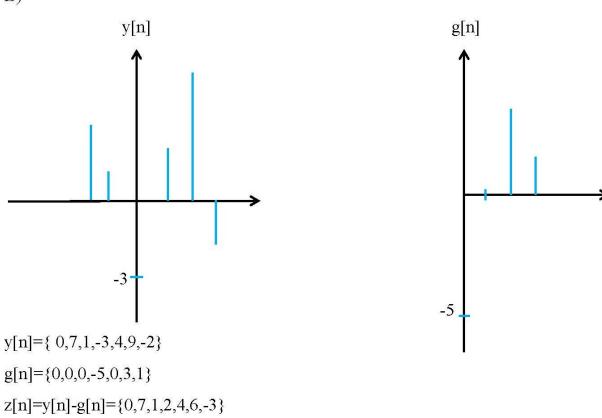

Example:- Consider the following two sequence of length (7) defined for $-3 \le n \le 3$

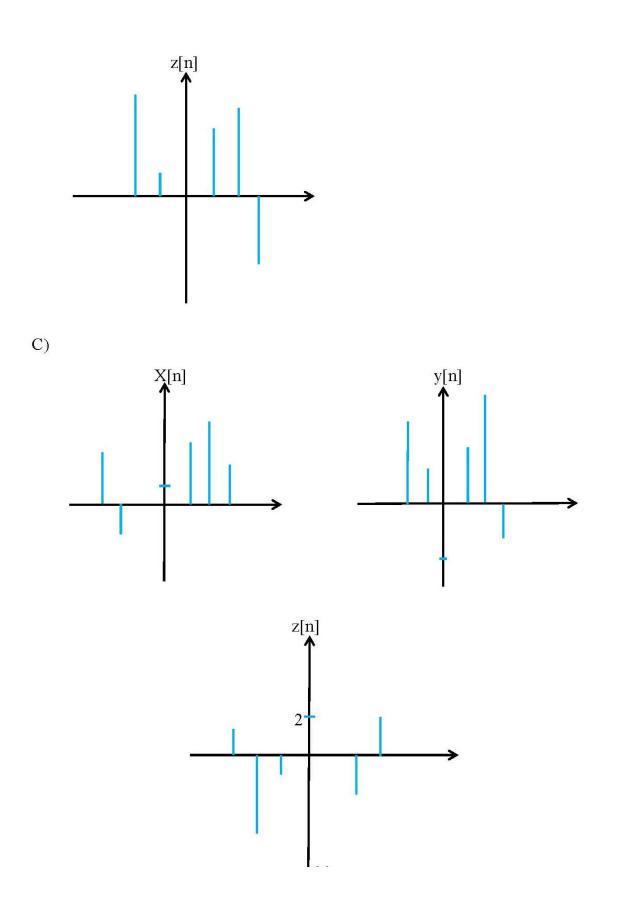
 $X[n] = \{3, -2, 0, 1, 4, 5, 2\}$ $Y[n] = \{0, 7, 1, -3, 4, 9, -2\}$ $3y[n] = \{0, 21, 3, -9, 12, 27, -6\}$ Also $g[n] = \{-5, 0, 3, 1\}$, $0 \le n \le 3$

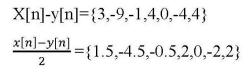

Find

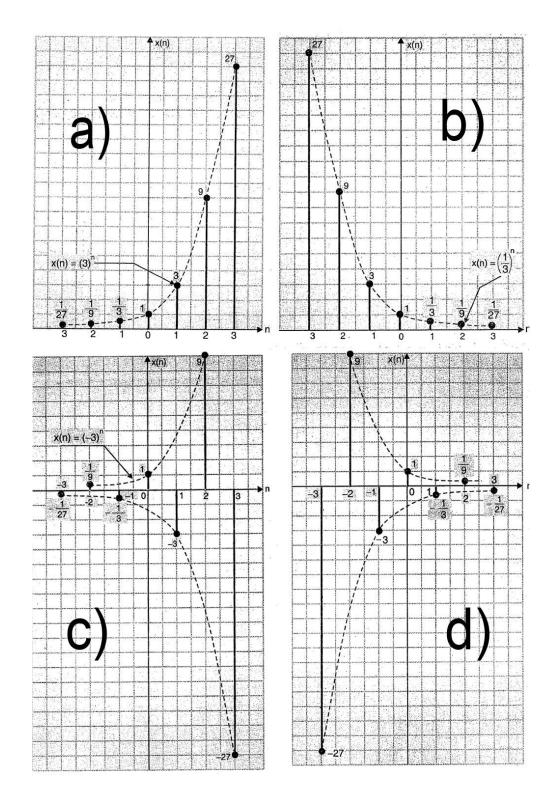
a)
$$z[n]=x[n]+3y[n]$$

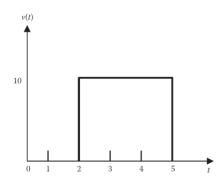
b) $z[n]=y[n]-g[n]$
c) $z[n]=\frac{x[n]-y[n]}{2}$
d) $z[n]=x[n-1]-3y[n+2]$


Sol.

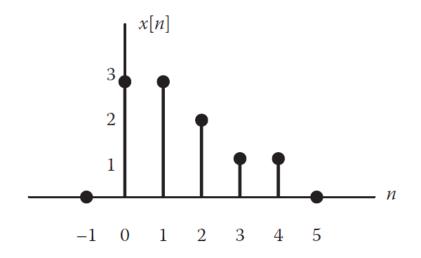


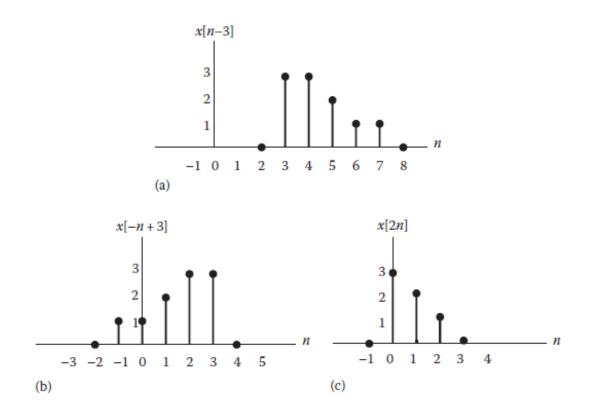

 $Z[n]=x[n]+3y[n]=\{3,19,3,-8,16,32,-4\}$



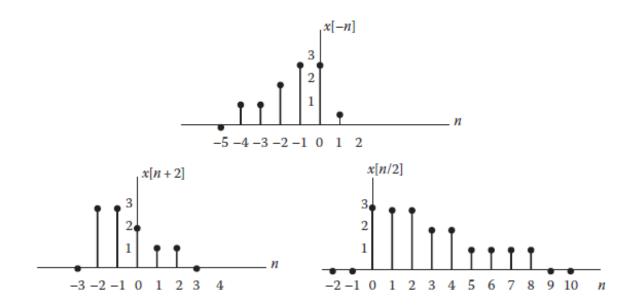

D)

Example 10: Sketch the signal $X[n] = a^n$ for a) a = 3, b) a = 1/3, c) a = -3, d) a = -1/3.




Sol: v(t) = 10u(t - 2) - 10u(t - 5)

Example 12: Sketch each of the following signals:


(a) x[n-3], (b) x[-n+3], (c) x[2n]. (d) x[-n], (e) x[n+2], (f) x[n/2]

if x[n] is shown in the figure :

Example 13: Find expressions for the various signals shown in figure below:

