## **Chapter Two**

### Discrete time signal

### **1-1** Representation of Discrete Time Sequences

The discrete time sequence is denoted by x (n) as shown in Figure (1). Here 'n' is the corresponding number of the sample, in the given diagram the value of n varies from -3 to + 3. On the Y-axis, the amplitude of signal is plotted. The signal is having some amplitude at each value of n. There are three representations of discrete signals:

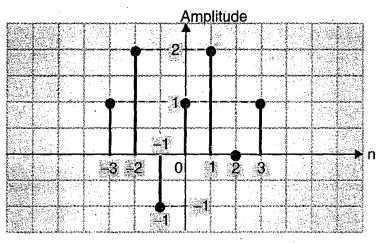


Figure 1: A discrete signal.

- Functional representation
- Tabular representation
- Sequence representation

| $\mathbf{x}(\mathbf{n}) = \begin{cases} 2\\1\\0\\-1 \end{cases}$ | for $n = -2, 1$<br>for $n = -3, 0, 3$<br>for $n = 2$<br>for $n = -1$ | x (n) = $\{1, 2, -1, 1, 2, 0, 1\}$ |
|------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------|
|------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------|

| n    | <br>-3 | -2 | -1 | 0 | 1 | 2 | 3 |
|------|--------|----|----|---|---|---|---|
| x(n) | <br>1  | 2  | -1 | 1 | 2 | 0 | 1 |

*Figure 2 : Types of representations of discrete signals. Functional, sequence and tabular.* 

#### 1-2 **Basic Sequence Types**

The most commonly used sequences are:

- Unit Impulse or Delta
- Unit Step
- Unit Ramp
- Exponential
- Sinusoidal
- Complex Exponential

#### 1-2.1 Unit Impulse or Delta Function

A Unit impulse function is denoted by  $\delta$  (n), its amplitude is 1 at n=0 and it is zero at all other instances. It is represented by:

Figure 3: Unit Impulse

# $\delta(n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}$

#### 1-2.2 Unit Step

A Unit function is denoted by U (n) and its value is unity (one) for all values of  $\begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases}$ n, and is zero for all negative values of n. it is written as u(n) =

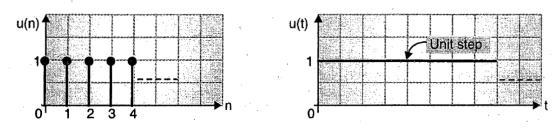


Figure 4: Unit step sequence and function.

#### 1-2.3 Unit Ramp

A Unit function is denoted by  $U_r$  (n) and its value increases linearly with the value of n and is zero for all negative n values.

 $u_{r}(n) = \begin{cases} n \text{ for } n \ge 0\\ 0 \text{ for } n < 0 \end{cases}$ 

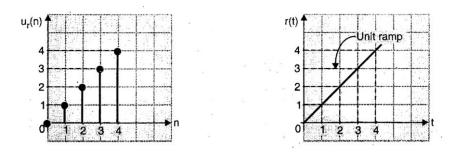


Figure 5 : Unit Ramp.

#### 1-2.4 Exponential Signal

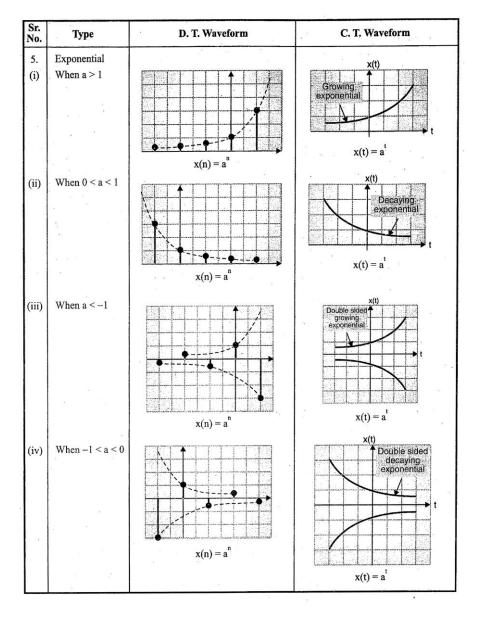


Figure 6 : Cases of Exponential signals  $x(n) = a^n$ 

#### 1-2.5 Sinusoidal Signal

 $x(n) = A \sin \omega n$  Here  $A = Amplitude \omega = Angular$  Frequency =  $2\pi f$ 

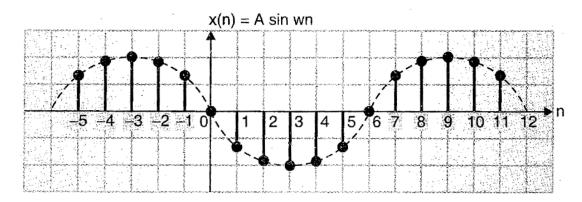


Figure 7: DT Sinusoidal waveform.

#### 1-2.6 Complex Exponentials

The complex exponential function will become a critical part of your study of signals and systems. Its general discrete form is written as: Ae<sup>sn</sup> Where,  $s=\sigma+i\omega$ . Here we can use Euler's formula which is:

 $e^{i\omega n}=e^{i\left(\omega+2\pi
ight)n}$  And  $e^{jx}=\cos{\left(x
ight)}+j\,\sin{\left(x
ight)}$ 

There will be two cases for the complex exponentials according to the value of e:

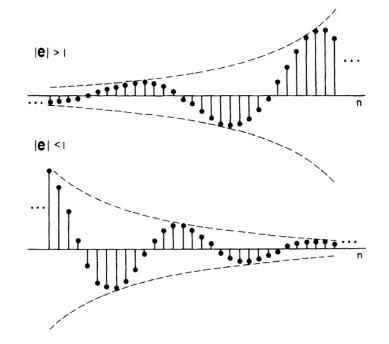


Figure 8: DT Complex exponential.

#### **1-3** Basic Operations on Sequence

Many times it is necessary to modify the original signal. This modification is achieved by performing different operations on given discrete-time signal. Some of these operations are:

- Time Delay
- Time Advance
- Time Folding
- Time Scaling (Up and Down Sampling)
- Amplitude Scaling (Amplification and Attenuation)
- Signals Addition
- Signals Multiplication

#### 1-3.1 Time Delay

 $\therefore$  x (n)  $\rightarrow$  Original sequence

and  $x(n-k) \rightarrow \text{Original}$  sequence delayed by k samples.

Example: Let the given signal by:  $x(n) = \{1, 2, 3, 4, 5\}$  which is shown in Figure (9)

We can write the delayed sequence as:

$$\begin{array}{rcl} x \ (n-k) &=& x \ (n-2) = \{0, \ 0, \ 1, \ 2, \ 3, \ 4, \ 5\} \\ \uparrow \end{array}$$

The Delayed version is shown in Figure (10).

#### 1-3.2 Time Advance

We can write advanced sequence as:

$$x(n+k) = x(n+2) = \{1, 2, 3, 4, 5\}$$

Which is shown in Figure (11).

1-3.3 Time Folding: It is the Reflection as:

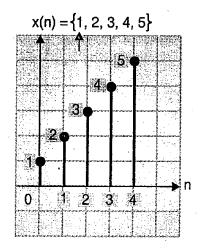
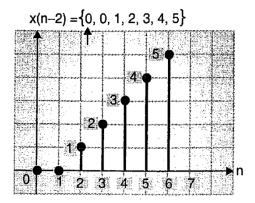


Figure 9: A Discrete Signal

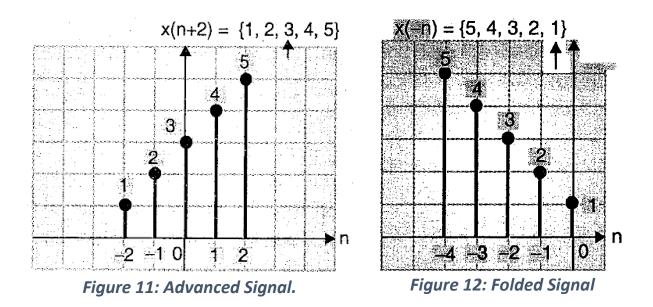




$$(-n) = \{5, 4, 3, 2, 1\}$$

х

Page 5 of 21



The folded signal can be delayed and advanced as shown in Figure (13) and Figure (14) respectively.

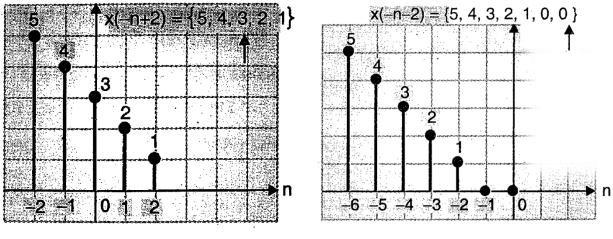
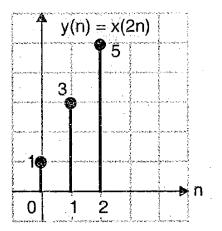


Figure 13: Delayed Folded Signal.



#### 1-3.4 Time Scaling

There are two types of time scaling, down and up scaling. Scaling call sometimes sampling. **Down sampling** as called Compression, scaling down by 2 is written as: that mean y(n) = x(2n) every two samples one goes out. For the signal of Figure (9) the output will become:  $y(n) = x(2n) = \{1, 3, 5, 0, ....\}$  Which is shown in Figure (15).



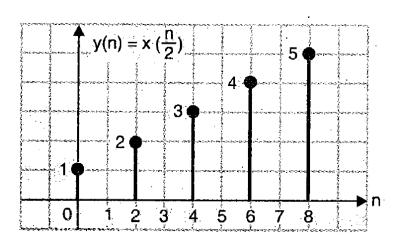


Figure 15: Down sampling



**Up sampling** as called Expansion, scaling up by 2 is written as:

There will be zeros between each sample as shown in figure (16)

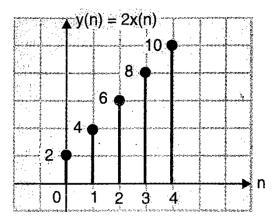
#### 1-3.5 Amplitude Scaling

An **Amplification** operation is, a sample multiplication, denoted for example by y(n) = 2\* x (n), for the same x (n) of Figure (9) the output will be as Figure (17).

While an **Attenuation** operation is dividing by a number, and is denoted by:

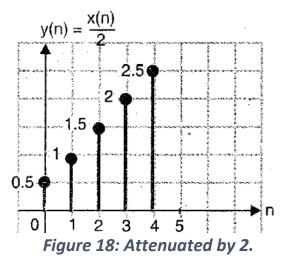
Let 
$$y(n) = \frac{x(n)}{2}$$

For the same signal of Figure (9), the output will be as in figure (18).



y(n) = x

Figure 17: Amplified by 2.



Page **7** of **21** 

#### 1-3.6 Signals Addition

Consider the two sequences:

Let 
$$y(n) = x_1(n) + x_2(n)$$
  
 $\therefore y(n) = \{3, 3, 0, 3, 3\}$ 

As shown in Figure (19), each sample is added to the corresponding one.

#### 1-3.7 Signals Multiplication

Consider the same sequences  $x_1$  (n) and  $x_2$  (n), the multiplication of them yields y (n) as shown in Figure (20) and according to the equation:

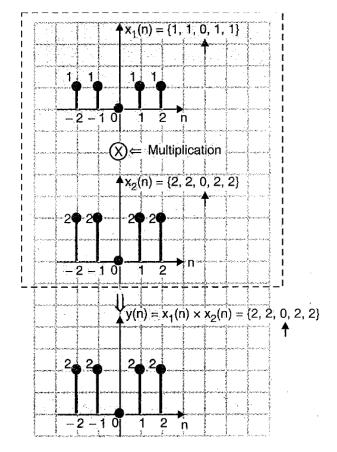
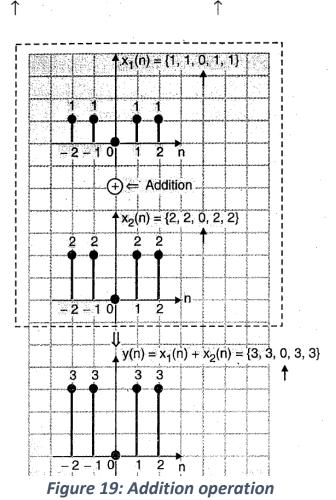


Figure 20: Multiplication operation.



 $x_1(n) = \{1, 1, 0, 1, 1\}$  and  $x_2(n) = \{2, 2, 0, 2, 2\}$ 

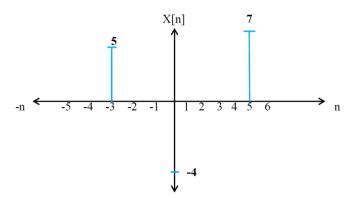
#### **1-4** Examples and Tutorials

*Note 1:* Properties of Unit Impulse signal are shown in Table (1).

Properties of the Unit Impulse Sequence 1.  $x[n]\delta[n] = x[0]\delta[n]$ 2.  $x[n]\delta[n-k] = x[k]\delta[n-k]$ 3.  $\delta[n] = u[n]-u[n-1]$ 4.  $u[n] = \sum_{k=-\infty}^{n} \delta[k]$ 5.  $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$ 

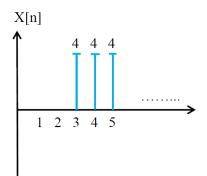
**Example 1:** Sketch the signal x[n] =5S[n+3] - 4S[n] + 7S[n-5].

Sol:



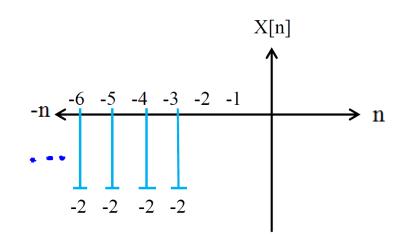
| Note 2     |                              |  |  |
|------------|------------------------------|--|--|
| x(n+1)     | Shift left by 1 <            |  |  |
| x(n-2)     | Shift right by 2 >>          |  |  |
| x(-n+3)    | Folded then Shift right by 3 |  |  |
| x(-n-4)    | Folded then Shift left by 3  |  |  |
| Conclusion | + + and < left               |  |  |
| conclusion | + - and - + > right          |  |  |

**Example 2:** Sketch the signal x[n]= 4u[n-3].

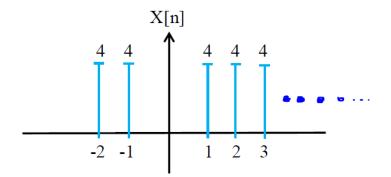


**Example 3:** Sketch the signal x[n]= -2u[-n-3]

Sol:

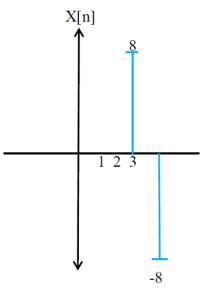


*Example 4:* Find the expression for signal:



**Sol:** 4u[n+2]

*Example 5:* Find the expression for signal: **Sol:** 8 δ [n-3] - 8 δ [n-4]



Page **10** of **21** 

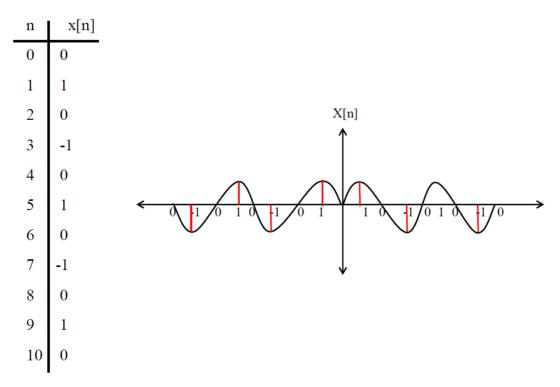
**Example 6:** Sketch the signal  $X[n] = e^{0.2n} u[n]$ :

Sol:

| n  | x[n]  | x[n]                 |
|----|-------|----------------------|
| 0  | 1     | -<br>↑               |
| 1  | 1.22  |                      |
| 2  | 1.49  |                      |
| 3  | 1.82  |                      |
| 4  | 2.22  |                      |
| 5  | 2.7   | 1 2 3 4 5 6 7 8 9 10 |
| 6  | 3.3   |                      |
| 7  | 4.055 |                      |
| 8  | 4.95  | ·                    |
| 9  | 6.04  |                      |
| 10 | 7.3   |                      |

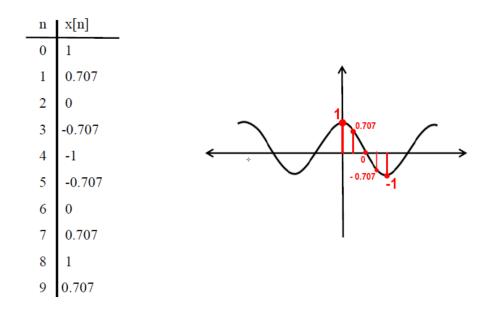
**Example 7:** Sketch the signal

 $x[n] = \sin\left[\frac{\pi n}{2}\right]$ 



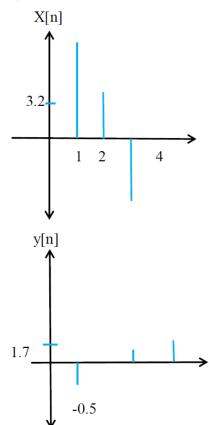
**Example 8:** Sketch the signal 
$$X[n] = \cos\left[\frac{\pi n}{4}\right]$$

Sol:



*Example 8:* Consider the following two sequence of length (5):

X [n] = { 3.2 , 41 , 36 , -9.5 , 0 } Y [n] = { 1.7 , -0.5 , 0 , 0.8 , 1 } Find a) X [n] . Y[n] b) X [n] + Y [n] c)  $\frac{7}{2}$  x[n]



Page **12** of **21** 

**Sol: a)** Z[n]= x[n].y[n]={5.44,-20.5,0,-7.6,0}

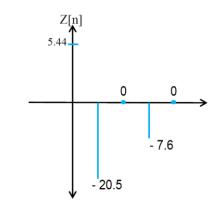
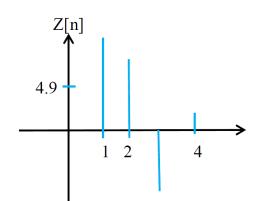
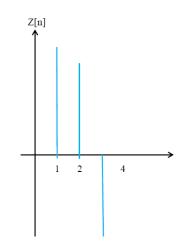


Figure a

**b)** Z[n]= x[n]+y[n] ={4.9,40.5,36,-8.7,1}



**c)** Z[n]= {11.2 ,143.5 ,126 ,-33.2 ,0}



#### Example 9:

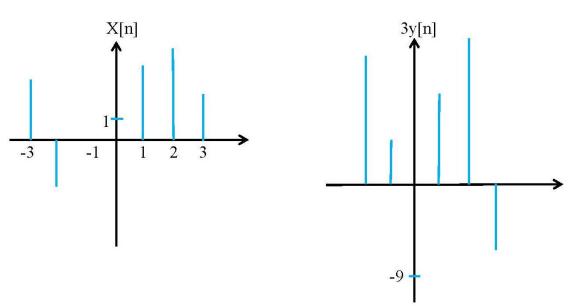
*Example:-* Consider the following two sequence of length (7) defined for  $-3 \le n \le 3$ 

 $X[n] = \{3, -2, 0, 1, 4, 5, 2\}$   $Y[n] = \{0, 7, 1, -3, 4, 9, -2\}$   $3y[n] = \{0, 21, 3, -9, 12, 27, -6\}$ Also  $g[n] = \{-5, 0, 3, 1\}$ ,  $0 \le n \le 3$ 

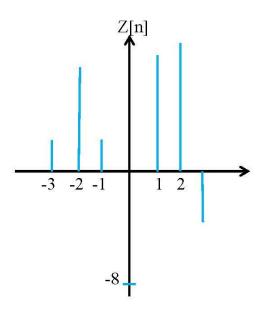
Find

a) 
$$z[n]=x[n]+3y[n]$$
  
b)  $z[n]=y[n]-g[n]$   
c)  $z[n]=\frac{x[n]-y[n]}{2}$   
d)  $z[n]=x[n-1]-3y[n+2]$ 

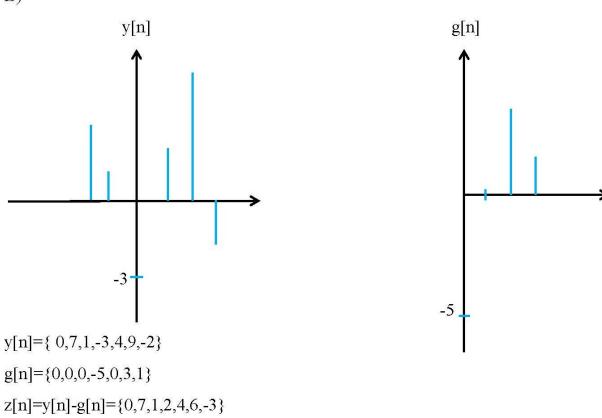
Sol.

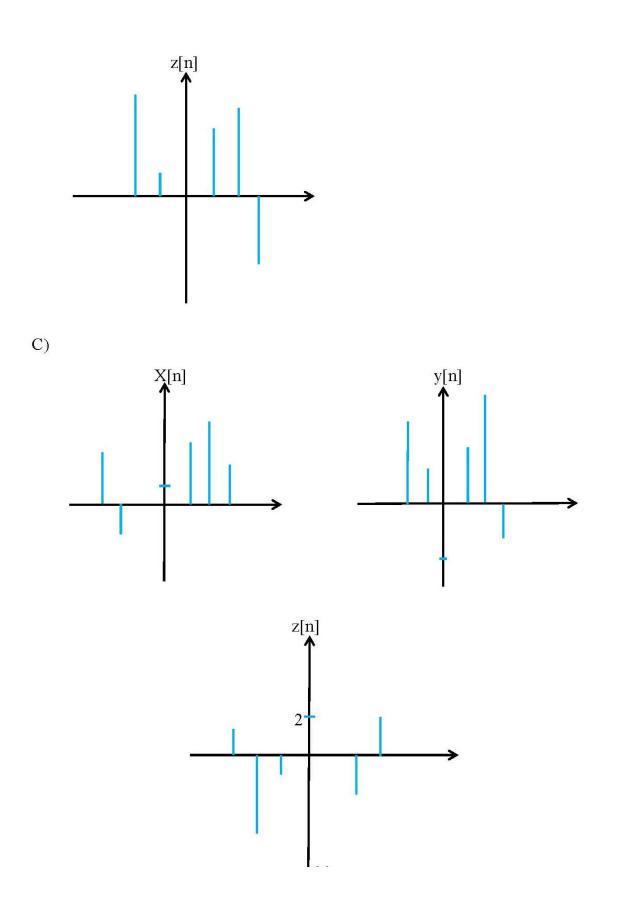


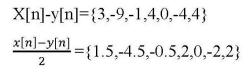
 $Z[n]=x[n]+3y[n]=\{3,19,3,-8,16,32,-4\}$ 



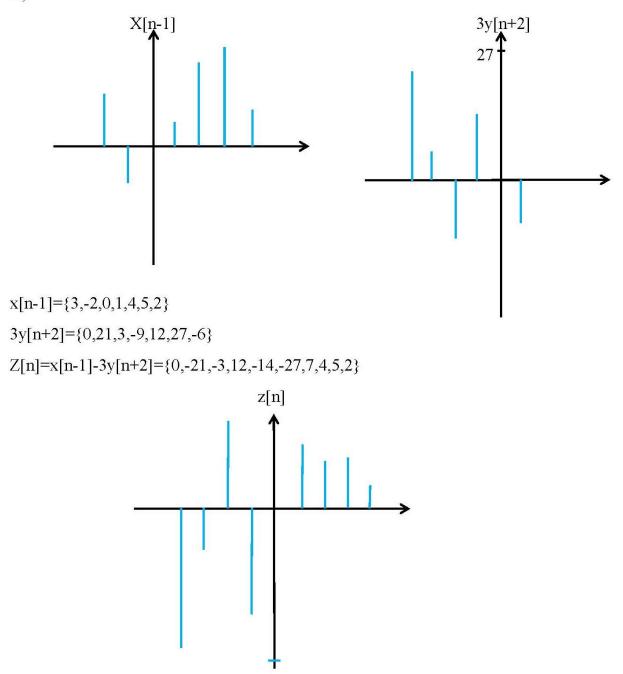




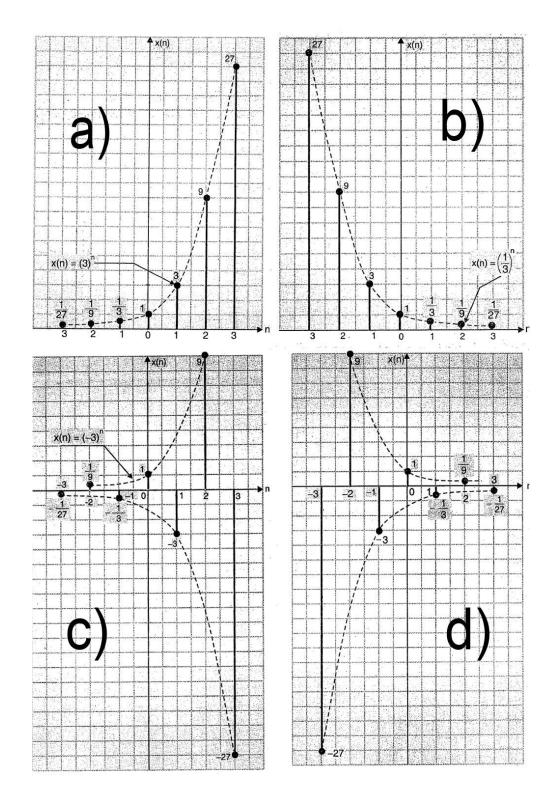




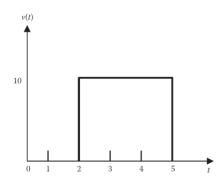
D)



# **Example 10:** Sketch the signal $X[n] = a^n$ for a) a = 3, b) a = 1/3, c) a = -3, d) a = -1/3.





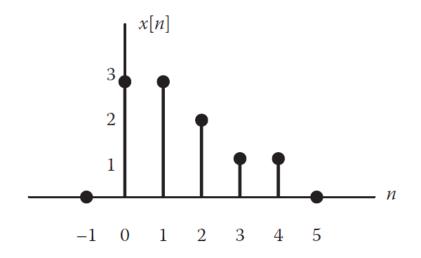


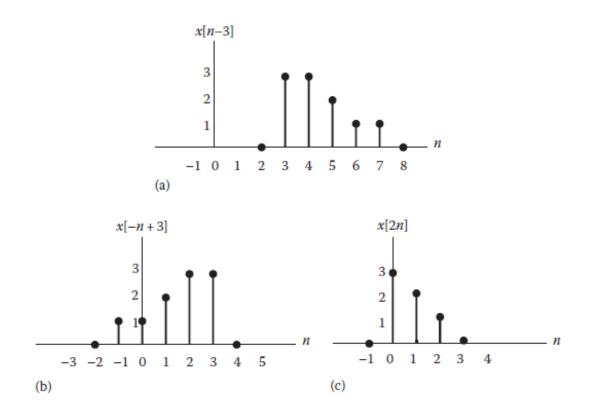
**Sol:** v(t) = 10u(t - 2) - 10u(t - 5)

*Example 12:* Sketch each of the following signals:

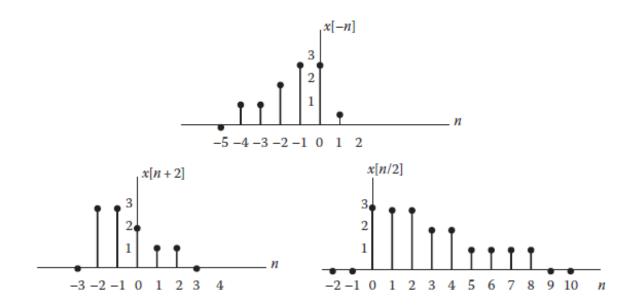
(a) x[n-3], (b) x[-n+3], (c) x[2n]. (d) x[-n], (e) x[n+2], (f) x[n/2]

if x[n] is shown in the figure :









*Example 13:* Find expressions for the various signals shown in figure below:

